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1. Introduction

Ring gear structural modes of planetary gear sets employed in modern automotive, aerospace,
marine and other industrial drive train systems often contribute significantly to the severity of the
gear whine problem caused by transmission error excitation. This is because the dynamic forces
generated at the planet-ring gear meshes can be transmitted into the casing and other attachments
through the ring structures that form one of the major vibratory energy paths. This is made worse
by the intended high-speed and high-load applications of this class of geared systems. Hence,
understanding the nature of these modes and their effects on vibration transmissibility is crucial to
the ability to tackle the acoustic noise concern successfully. However, analytical modelling of ring
gear dynamics is not trivial due to the geometrical complexity of the tooth form. Furthermore, the
ring gear modes are more complex and less conforming. A potentially simpler approach is to
utilize analytical and/or computational solutions of smooth ring structures having nearly the same
nominal dimensions but without the explicit presence of the spline and tooth geometries. This less
complicated representation may provide a more effective way of studying the basic modal
phenomenon and computing the critical response parameters that control gear vibration and
ultimately gear whine.

In order to determine the feasibility of the above-mentioned hypothesis, this communication
compares the modal frequencies of ring gears and idealized smooth rings, and quantifies the
frequency deviations in applying the simpler smooth ring solutions to represent the primary
modal behaviors of ring gear structures. The modal solutions of the equivalent smooth ring are
obtained by applying the Kirkhope dynamic stiffness matrix formulation [1,2], while the modal
frequencies of the actual ring gears of interest are computed using the dynamic finite element
method (FEM). A series of parametric study is conducted to examine the effects of ring thickness
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and width dimensions on the levels of discrepancy observed. Specifically, the thickness to radius
and width ratios denoted by ¢/r and ¢/w, respectively, are considered. Results from this
comparative analysis will be scrutinized in detail to determine the feasibility of applying the
existing smooth ring theories to predict natural modes and vibration transmissibility in planetary
gear sets. Prior to discussing the analysis and results, a review of published work on planetary gear
and circular ring vibrations is given below.

Most of published studies on planetary gear dynamics assume a rigid ring gear model with
localized mesh stiffness [3—8]. Using this concept, detailed dynamic analyses have been carried out
by considering numerous factors such as mesh stiffness, dynamic transmission error, frictional
forces, manufacturing variances, assembly errors, torque fluctuations of the driving motor, and
planet gear phasing. For instance, Kahraman [3] developed a purely torsional model to predict the
natural frequencies of a single stage planetary gear train system to the level of accuracy normally
required by gear designers. The author was able to deduce a closed form solution for the torsional
natural frequencies in terms of a limited set of system parameters. The same author [4] also
developed a non-linear time-varying dynamic model for systems with any number of planet gears
to study the load sharing characteristics. Lin and Parker [5,6] studied the sensitivity of planetary
gear natural frequencies and vibration modes to selected parameters, and subsequently examined
the effects of unequally spaced planets on the vibration characteristics of a planetary system.
Saada and Velex [7] studied the effects of mesh stiffness, helix angle, and ring support stiffness on
the dynamic behavior of planetary gear trains, Velex and Flamand [8] extended this model to
calculate the dynamic tooth loads on a planetary gear set.

Many of the proposed models were able to predict dynamic mesh forces and system modes
quite sufficiently. However, the fundamental assumption of rigid ring gear renders the model
incapable of predicting the extent of force and vibration transmissibilities through the ring gear
structure, and quantifying the effects of ring gear modes. A search through the literature has
resulted in only a small handful of articles that consider the effect of ring gear flexibility. In one of
the papers, Ma and Botman [9] analyzed the dynamic loads that include the contribution from
selected ring gear in-plane bending modes. Effects of tooth and spline geometries, and majority of
the ring gear flexible modes were not examined. In another paper, Stolarski [10] considered only
the quasi-static deformation of the ring assuming an oval shape function and applied the model to
calculate the deviation in stresses due to moving pinions. His model does not account for the
dynamics of the epicyclic gear train. This lack of earlier studies found makes it even more
important to address the effects of ring gear flexible modes when attempting to improve the design
of planetary gear trains.

In contrast, the literature contains an abundance of circular ring vibration work. The earliest
analysis was performed by Love [11] that resulted in the estimation of the natural frequencies of
the four basic classes of natural modes: (a) flexural vibration in the plane of the ring (radial
inextensional), (b) flexural vibration out of the plane of the ring (out-of-plane bending), (c)
torsional, and (d) extensional. Over the years, many researchers have re-worked this problem to
study the effects of various parameters on the natural frequencies and mode shapes of circular
rings with either circular or rectangular cross-sections. For examples Kirkhope [1,2] obtained a
dynamic stiffness matrix for in-plane and out-of-plane motions that was applied to compute the
natural frequencies and mode shapes. He included the parameters such as rotary inertia and
transverse shear that were neglected in the classical theory developed by Love. Rao [12] calculated
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the effects of transverse shear and rotary inertia on the coupled twist-bending vibration modes of
circular rings, whereas Bickford and Maganty [13] obtained the expressions for out-of-plane
modal frequencies of a thick ring, which accounts for the variations in curvature across the cross-
section. Charnley et al. [14] modified the equation of motion derived by Love for a general cross-
section case, which included the rotary inertia effect. The wealth of research on circular ring
vibrations coupled with the lack of work done related to flexible ring gears makes it very attractive
to extend smooth ring theories to analyze ring gear dynamics, which is the premise for this note.

2. Modal analysis

A typical ring gear is essentially made up of a circular ring with tooth and spline features
attached at certain regular intervals along the circumferential direction. These teeth and splines
make the overall structure geometrically more complex and pose difficulty in applying the
classical theory of continuum mechanics in order to obtain analytical expressions of natural
frequencies, mode shapes and vibration transmissibility characteristics. The alternative approach
is to employ the dynamic FEM that, although can often predict the modal quantities quite
accurately, takes considerable effort and experience to apply. Furthermore, the FEM, due to its
inherent purely computational nature, may not be able to provide the critical insights normally
afforded by analytical treatments that can lead to a better understanding of the underlying physics
of the problem. However, for our purpose here, the FEM can be applied to verify the accuracy
and limitations of adopting smooth ring theories to investigate ring gear dynamics.

A dynamic finite element package [15] is applied in this study to perform the free vibration
analysis of unconstrained ring gears and circular rings. The baseline geometries of these ring gear
structures are shown in Table 1. To keep the model size small, the gear teeth are modelled as
straight-faced instead of the exact involute shape and their root radii are not considered explicitly.
Since the objective of this analysis is not to predict the modal quantities of specific gear problems,
but rather to show the applicability of circular ring theories, these assumptions are not critical to
the outcome of this study. The structures are discretized using a set of 10-noded tetrahedron
elements. This type of higher order tetrahedron element is used to ensure a sufficiently accurate
representation and to obtain a better approximation of the displacement field. Fig. 1 shows the
finite element models of the two ring gear structures and the equivalent circular ring
representations. All the modes between 0 and 25kHz are extracted from the normal mode
analysis based on the Lanczos scheme. Their natural frequencies for cases A and B are shown in

Table 1
Geometries of ring gear and circular ring structures of interest

Outer diameter (mm) Inner diameter (mm) Width (mm) Number of teeth Number of splines

Ring gear A 201.14 184.94 34.29 114 17
Ring gear B 135.56 124.88 30.73 78 15
Smooth ring A 201.14 184.94 34.29 — —

Smooth ring B 135.56 124.88 30.73 — —
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Fig. 1. Finite element models of the ring gear and smooth ring structures: (a) ring gear A, (b) ring gear B, (¢) ring A,
and (d) ring B.

Tables 2 and 3, respectively, along with the experimental data of ring gears and analytical results
of smooth rings, which will be discussed more in detail later. The predicted mode shapes of the
ring gears can be classified into (a) radial inextensional, (b) out-of-plane bending, (c) extensional,
and (d) torsional classes of modes, as shown in Fig. 2. Within the same class, the individual modes
are distinguished using the nodal diameters symbolized by n. Note that the radial inextensional
and out-of-plane bending modes corresponding to n = 0, 1 are rigid body modes, and therefore
are not illustrated in Fig. 2. Since the primary deformation of the radial inextensional modes is
radial, they are expected to be the most efficient transmitter of the vibratory energy into the
housing structure as their motions couple well with the transverse displacement of the external
shell.

Kirkhope [1] provided a dynamic stiffness matrix with the effects of transverse shear and rotary
inertia for in-plane vibration of thick circular ring. The formulation uses the Timoshenko shear
coefficient that accounts for the variations in shear strain across the cross-section to represent the
average rotation due to transverse shear. The resulting eigenvalue problem gives the natural
frequencies and modes for in-plane flexure (radial inextensional), extensional, and transverse
shear. Furthermore, Kirkhope [2] also derived a stiffness matrix for out-of-plane motion, which
predominantly yields out-of-plane bending, torsion of the ring section with essentially no
displacement of the centroidal axis, and transverse shear modes. The torsion constant used in the
equation is given by Roark and Young [16]. The natural frequencies of the radial inextensional,



Table 2
Comparisons of the natural frequencies of ring gear A obtained from modal experiment and FEM, and smooth ring A obtained analytically and
from FEM

n Ring gear A (Hz) Smooth ring A (Hz) % deviation (I) % deviation (IIT) % deviation(I) % deviation(II)

vs. (IT) vs. (IV) vs. (III) vs. (IIT)

Expt. (I) FEM (II) Analytical FEM (1V)
(111)

(a) Radial inextensional
2 602 622 550 552 —-3.32 —0.36 8.64 11.58
3 1691 1744 1547 1554 —3.13 —0.45 8.52 11.30
4 3207 3306 2942 2964 -3.09 —0.74 8.26 11.01
5 5113 5266 4710 4758 —-2.99 —1.01 7.88 10.56
6 7379 7587 6827 6915 —2.82 —1.27 7.48 10.02
7 9945 10,216 9268 9413 -2.72 —1.54 6.81 9.28
8 12,734 13,009 12,008 12,226 —2.16 —1.78 5.70 7.69
9 16,344 16,728 15,021 15,330 —2.35 —2.02 8.09 10.20

(b) Out-of-plane bending

2 1344 1312 1145 1167 2.38 —1.89 14.81 12.73
3 3961 3883 3497 3580 1.97 —2.32 11.71 9.94
4 7270 7133 6401 6631 1.88 —3.47 11.95 10.26
5 10,773 10,625 9331 9855 1.37 —5.32 13.39 12.18
6 14,305 14,077 12,084 13,081 1.59 —7.62 15.53 14.16
7 17,332 17,261 14,664 16,315 0.41 —10.12 15.39 15.05
(¢) Extensional

0 7699 7609 8482 8479 1.17 0.04 —10.17 —11.47
1 10,852 10,717 11,978 11,961 1.24 0.14 —10.38 —11.77
2 16,379 16,851 18,927 18,863 —2.88 0.34 —15.56 —12.32
(d) Torsional

0 7230 6998 8449 8091 3.21 4.42 —16.86 —20.73
1 9027 8828 9416 9332 2.20 0.9 —4.31 —6.66
2 11,350 11,121 11,388 11,403 2.02 —0.13 —0.33 —24
3 14,211 13,982 14,216 14,348 1.61 —0.92 —0.04 —1.67
4 17,371 17,285 21,927 — 0.50 — —26.23 —26.86
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Table 3
Comparisons of the natural frequencies of ring gear B obtained from modal experiment and FEM, and smooth ring B obtained analytically and from
FEM

n Ring gear B Smooth ring B (Hz) % deviation (I) % deviation (I1I) % deviation (I) % deviation (II)

vs. (II) vs. (IV) vs. (III) vs. (III)

Expt. () FEM (1I) Analytical FEM (1V)
(111)

(a) Radial inextensional
2 910 940 797 802 -3.30 —0.62 12.42 15.21
3 2555 2634 2242 2263 —3.09 —0.93 12.25 14.88
4 4828 4985 4266 4320 —3.25 —1.25 11.64 14.42
5 7684 7924 6832 6942 —3.12 —1.58 11.09 13.78
6 11,031 11,370 9907 10,097 -3.07 —1.88 10.19 12.87
7 14,668 15,105 13,456 13,754 —2.98 —2.17 8.26 10.92
8 19,547 20,214 17,445 17,879 —3.41 —2.43 10.75 13.70
9 23,953 24,649 21,835 22,433 —-291 —2.67 8.84 11.42

(b) Out-of-plane bending

2 2129 2131 1680 1727 —0.09 —2.72 21.09 21.16
3 6035 6013 4805 5039 0.36 —4.64 20.38 20.09
4 10,570 10,476 8156 8825 0.89 —7.58 22.84 22.15
5 15,086 14,895 11,261 12,674 1.27 —11.15 25.35 24.40
6 19,234 18,973 16,895 16,624 1.36 1.63 12.16 10.95
7 22,367 22,043 19,571 20,772 1.45 —5.78 12.5 11.21

(c) Extensional

0 10,094 10,835 12,574 12,565 —7.34 0.07 —24.57 —16.05
1 14,984 15,180 17,757 17,719 —1.31 0.21 —18.51 —16.98
2 23,488 23,689 28,060 — —0.86 — —19.47 —18.45

(d) Torsional

0 9660 10,149 12,574 12,235 —5.06 2.77 —30.17 —23.89
1 12348 12,414 13,541 13,521 —0.53 0.15 —9.66 —9.08
2 15,770 15,889 16,828 16,951 —0.75 —0.73 —6.71 —5.91
3 20,254 20,479 21,916 22,174 —1.11 —1.16 —8.21 —7.02
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(©)

n=3

(d)

Fig. 2. Classification of ring gear structure modes in terms of n nodal diameters for each of the four classes of modes:
(a) radial inextensional; (b) out-of-plane bending; (c) extensional; and (d) torsional.

extensional, out-of-plane bending and torsional classes of modes for the two smooth rings of
interest applying the Kirkhope dynamic stiffness matrix formulations are also shown in Tables 2
and 3, respectively.

To provide further validation, the modal experiments depicted in Fig. 3 were carried out to
obtain the natural frequencies and frequency response function (FRF) of the two ring gears
defined in Table 1. In the experiment, the ring gears were suspended using a flexible cord to
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Fig. 3. Schematic of the modal experiment set-up: (a) normal excitation; and (b) in-plane excitation.
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Fig. 4. Comparison of experimental (————) and FEM predicted (——) driving point frequency accelerance response
functions of ring gear A.

simulate the free boundary condition, and excited with a modal hammer (steel tip) in the in-plane
and out-of-plane (normal) directions to increase the probability of finding all four classes of
modes. Miniature accelerometers having up to 25kHz of usable bandwidth were employed to
acquire the vibration response. The data is then processed using a state-of-the-art 16-channel VXI
data acquisition system to yield the FRF sought. Typical results (amplitude only) of the measured
FRF are shown in Figs. 4 and 5 for ring gears A and B, respectively. From these FRF results, the
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Fig. 5. Comparison of experimental (————) and FEM predicted (——) driving point frequency accelerance response
functions of ring gear B.

natural frequencies can be easily extracted. While identifying the natural frequencies, the phase
angle was verified for consistency and the coherence was observed to be mostly in the range of
0.97-0.99. From Tables 2 and 3, the measured and predicted natural frequency results show
excellent match for most modes. The slight deviation at higher frequencies may be attributed to
the differences in the geometry and material property between the FEM model and actual
hardware.

3. Results

Based on the natural frequencies obtained from the modal experiments, FEM and Kirkhope
theory, tabulated in Tables 2 and 3, it is observed that many of the frequencies of the radial
inextensional modes tend to fall within the typical frequency range of gear noise and vibration
problem. Column 6 in Tables 2 and 3 shows the % deviation between experimentally obtained
and FEM predicted natural frequency values of the ring gears. The deviations observed are less
than 5% for most modes. Column 7 in Tables 2 and 3 shows the % deviation between analytical
and FEM predicted smooth ring natural frequencies. Again, the deviations are less than 5% in
most cases. Slight differences in both sets of results may be attributed to the differences in the
geometry, material properties between actual hardware and FE model and uncertainty in
measurement. These two results serve as the basis for the following comparisons.

Data in column 8 represents the % deviation between the measured natural frequency values of
ring gears and analytical predictions of the corresponding equivalent smooth rings. For radial
inextensional modes, these errors are generally 5-9% for case A, and 8-13% for case B. For out-
of-plane bending modes, these errors are 11-26% for case A and 12-25% for case B. For
extensional modes, the deviations become 18-25% for ring gear A and 10-16% for ring gear B.
Lastly, for torsional modes, these frequency errors are 6-30% and 0-27% for cases A and B,
respectively. On similar comparisons, the last column represents the % deviation between the
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Fig. 6. Comparative effects of ¢/r and 7/w on % deviation between ring gear (FEM) and ring (analytical) natural
frequencies of radial inextensional modes: (a)n =2; (b)n=3;(c)n=4;(d)n=5;and (e)n =6 (—-®—, ¢t/r = 0.07, —H—,
t/r=0.10; —A—, t/r =0.13; - @—, t/r = 0.15).

natural frequency values obtained from the FEM model of the ring gears and analytical modal
predictions of the smooth rings. For radial inextensional modes, the deviations are 10-16% for
ring gear A and 7-12% for ring gear B. For out-of-plane bending modes, they are 11-25% for
ring gear A and 9-15% for ring gear B. For extensional modes, these deviations are 16-19%
for ring gear A and 11-13% for ring gear B, and finally for torsional modes, these deviations are
7-24% for ring gear A and 1-27% for ring gear B. For these cases studied, it can be observed that
applying smooth ring results to model ring gears tend to underestimate the natural frequency
value. The deviations seen for radial inextensional modes are approximately constant and do not
change with n, whereas for other modes, the errors are sporadic in nature and do fluctuate
considerably with n. This is probably because of the fact that radial inextensional modes, due to
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the nature of its deformation pattern, involve much lesser straining of teeth and splines than other
classes of modes. Based on this finding, it can be suggested that the smooth ring theory may be
used to predict the radial inextensional modes of ring gears quite accurately if the appropriate
adjustments are applied. For other classes of modes, since the % deviation changes unpredictably
with #n, it becomes difficult to apply the modal results of regular rings to ring gear cases. Fig. 6
shows the deviations in radial inextensional natural frequencies (for n = 2—6) as a function of ¢/r
and 7/w. It is observed that the deviations are not constant, but change with thickness and width
values. The deviations decrease slightly with increase in 7/w, i.e., decrease in width. However, as
t/r increases, these deviations decrease appreciably. Thus, for thicker ring gears, the discrepancies
in applying smooth ring analytical equations is much lesser as compared to thinner ring gears.
This is because as the thickness increases, the relative effect of teeth and splines becomes less
significant and hence limiting the extent of frequency deviations.

4. Concluding remarks

From the comparative analysis shown, it can be concluded that splines and teeth in most cases
have significant effect on the natural frequency values of ring gear structure. This renders the idea
of applying smooth ring without teeth and splines less effective. However, if only radial
inextensional modes are of interest, which is expected to be the most dominant mode affecting
gear noise, then the ring gear may be modelled sufficiently as a smooth circular ring structure with
minor adjustments. The tuning needed depends on the rim thickness and width of the ring
geometry. In the case of gear whine, where most of the problematic frequencies lie within the first
few modes of the radial inextensional class, the direct application of classical smooth ring theories,
such as the ones suggested by Kirkhope, to more complex ring gear is feasible. For other classes of
ring modes with the exception of the first two out-of-plane bending modes, the use of smooth ring
theories produce large, irreparable discrepancies. The present findings are further being applied to
examine the forced response problem. Also, the modification to the existing smooth ring theories
to be most applicable to ring gears will be considered in future work.
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